Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genome editing technologies have advanced significantly over the past few years, providing a fast and effective tool to precisely manipulate the genome at specific locations. The three commonly used genome editing technologies are Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Cas9 (CRISPR/Cas9) system. ZFNs and TALENs consist of endonucleases fused to a DNA-binding domain, while the CRISPR/Cas9 system uses guide RNAs to target the bacterial Cas9 endonuclease to the desired genomic location. The double-strand breaks made by these endonucleases are repaired in the cells either by non-homologous end joining, resulting in the introduction of insertions/deletions, or, if a repair template is provided, by homology directed repair. The ZFNs, TALENs and CRISPR/Cas9 systems take advantage of these repair mechanisms for targeted genome modification and have been successfully used to manipulate the genome in human cells. These genome editing tools can be used to investigate gene function, to discover new therapeutic targets, and to develop disease models. Moreover, these genome editing technologies have great potential in gene therapy. Here, we review the latest advances in the application of genome editing technology to the study and treatment of hematological disorders.

Original publication

DOI

10.1016/j.jbior.2015.09.005

Type

Journal article

Journal

Adv Biol Regul

Publication Date

01/2016

Volume

60

Pages

122 - 134

Keywords

CRISPR, Genome editing, Hematological disease, TALEN, ZFN, Animals, Gene Editing, Genetic Techniques, Genome, Hematologic Diseases, Humans