Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In stimulated emission depletion (STED) microscopy, the spatial resolution scales as the inverse square root of the STED beam's intensity. However, to fully exploit the maximum effective resolution achievable for a given STED beam's intensity, several experimental precautions have to be considered. We focus our attention on the temporal alignment between the excitation and STED pulses and the polarization state of the STED beam. We present a simple theoretical framework that help to explain their influence on the performance of a STED microscope and we validate the results by imaging calibration and biological samples with a custom made STED architecture based on a supercontinuum laser source. We also highlight the advantages of using time gating detection in terms of temporal alignment.

Type

Journal article

Journal

Opt Express

Publication Date

26/03/2012

Volume

20

Pages

7362 - 7374

Keywords

Algorithms, Computer-Aided Design, Equipment Design, Equipment Failure Analysis, Image Enhancement, Lasers, Lighting, Microscopy