Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Regulation of oxidative stress (OS) in adipocytes is an important mediator of their development and dysfunction. Highly unsaturated fatty acids (HUFAs) play essential roles in marine fish, where they have anti-lipogenic effects, but they are prone to peroxidation. The aim of this study was to investigate how the effects of HUFAs in fish adipocytes are modulated by changes in their intracellular redox status. Adipocytes from Atlantic salmon were cultivated on HUFA-rich media and treated with buthionine sulfoximine (BSO), which is known to deplete stores of the antioxidant glutathione (GSH) thus increasing OS, and alpha-tocopherol (alpha-TOC), which protects from OS. Gene expression was assessed by qPCR. In addition, phospholipid composition, total fatty acid (FA) composition, TBARS, the activities of pro-apoptotic caspase 3 (CASP3) and antioxidant superoxide dismutase (SOD) were determined. BSO treatment decreased the expression of genes encoding GSH-based antioxidant enzymes glutathione peroxidase (GPX) 2 and GPX3. Consequently, depletion of GSH resulted in the highest level of peroxidation products TBARS despite the increased activity of SOD in this group. Significant reduction of TBARS was achieved by alpha-TOC. Further, in comparison to two alpha-TOC supplemented groups, GSH-depleted cells accumulated less fat and their gene expression profile of adipogenic markers was lower. The formation of large intracellular vesicles was prominent in the control and BSO groups while reduction of OS by alpha-TOC coincided with the increased gene expression of the activating transcription factor 6 (ATF6), a transducer of the endoplasmic reticulum (ER)-stress response. CASP3 assay showed no difference between groups; however, depletion of GSH resulted in the increased gene expression of several apoptotic markers. Up-regulation of the apoptosis inducible factor (AIF) implied higher probability of CASP3-independent apoptosis in cells under increased OS. In conclusion, the study provides several lines of evidence in favour of anti-adipogenic effects of OS in a cold blooded vertebrate.

Original publication

DOI

10.1016/j.cbpb.2010.04.010

Type

Journal article

Journal

Comp Biochem Physiol B Biochem Mol Biol

Publication Date

08/2010

Volume

156

Pages

309 - 318

Keywords

Adipocytes, Animals, Apoptosis, Cell Differentiation, Culture Media, Endoplasmic Reticulum, Fatty Acids, Fatty Acids, Omega-3, Fish Proteins, Oxidative Stress, Phospholipids, Salmo salar