Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Quantum dots that emit in the near-infrared can be used in vivo to follow circulation, to target the reticuloendothelial system, and to map lymphatic drainage from normal tissues and tumors. We have explored the role of surface charge and passivation by polyethylene glycol in determining circulating lifetimes and sites of deposition. Use of long polyethylene glycol polymers increases circulating lifetime. Changing surface charge can partially direct quantum dots to the liver and spleen, or the lymph nodes. Quantum dots are cleared in the order liver > spleen > bone marrow > lymph nodes. Quantum dots retained by lymph nodes maintained fluorescence for two years, suggesting either that the coating is extremely stable or that some endosomes preserve quantum dot function. We also explored migration from tumors to sentinel lymph nodes using tumor models in mice; surface charge and size make little difference to transport from tumors. Antibody and Fab-conjugates of polymer-coated quantum dots failed to target tumors in vivo, probably because of size. © 2008 Springer.

Original publication

DOI

10.1007/978-1-4020-6829-4-11

Type

Conference paper

Publication Date

01/12/2008

Pages

127 - 137