Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Posttranslational activation of glucokinase (GCK) through S-nitrosylation has been recently observed in the insulin-secreting pancreatic beta-cell; however, the function of this molecular mechanism in regulating the physiology of insulin secretion is not well understood. To more fully understand the function of posttranslational regulation of GCK, we examined two naturally occurring GCK mutations that map to residues proximal to the S-nitrosylated cysteine and cause mild fasting hyperglycemia (maturity-onset diabetes of the young; subtype glucokinase). The kinetics of recombinantly generated GCK-R369P and GCK-V367M were assessed in vitro. The GCK-R369P protein has greatly reduced catalytic activity (relative activity index 0.05 vs. 1.00 for wild type), whereas the GCK-V367M has near normal kinetics (relative activity index 1.26 vs. 1.00 for wild type). Quantitative imaging and biochemical assays were used to assess the effect of these mutants on the metabolic response to glucose, GCK activation, and S-nitrosylation of GCK in betaTC3 insulinoma cells. Expression of either mutant in betaTC3 cells did not affect the metabolic response to 5 mM glucose. However, expression of either mutant blocked the effects of insulin on glucose-stimulated nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate reduction, suggesting defects in posttranslational regulation of GCK. Each of these mutations blocked GCK activation, and prevented posttranslational cysteine S-nitrosylation. Our findings link defects in hormone-regulated GCK S-nitrosylation to hyperglycemia and support a role for posttranslational regulation of GCK S-nitrosylation as a vital regulatory mechanism for glucose-stimulated insulin secretion.

Original publication




Journal article


Mol Endocrinol

Publication Date





171 - 177


Age of Onset, Animals, Cell Line, Tumor, Diabetes Mellitus, Type 2, Enzyme Activation, Fluorescence Resonance Energy Transfer, Glucokinase, Glucose, Humans, Insulin, Insulin-Secreting Cells, Kinetics, Luminescent Proteins, Mice, Molecular Imaging, Mutant Proteins, Point Mutation, Protein Processing, Post-Translational, Recombinant Fusion Proteins, Transfection