Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: (i) To optimize an MR-compatible organ perfusion setup for the nondestructive investigation of isolated rat hearts by placing the radiofrequency (RF) coil inside the perfusion chamber; (ii) to characterize the benefit of this system for diffusion tensor imaging and proton ((1) H-) MR spectroscopy. METHODS: Coil quality assessment was conducted both on the bench, and in the magnet. The benefit of the new RF-coil was quantified by measuring signal-to-noise ratio (SNR), accuracy, and precision of diffusion tensor imaging/error in metabolite amplitude estimation, and compared to an RF-coil placed externally to the perfusion chamber. RESULTS: The new design provided a 59% gain in signal-to-noise ratio on a fixed rat heart compared to using an external resonator, which found reflection in an improvement of living heart data quality, compared to previous external resonator studies. This resulted in 14-29% improvement in accuracy and precision of diffusion tensor imaging. The Cramer-Rao lower bounds for metabolite amplitude estimations were up to 5-fold smaller. CONCLUSION: Optimization of MR-compatible perfusion equipment advances the study of rat hearts with improved signal-to-noise ratio performance, and thus improved accuracy/precision.

Original publication

DOI

10.1002/mrm.25369

Type

Journal article

Journal

Magn Reson Med

Publication Date

06/2015

Volume

73

Pages

2398 - 2405

Keywords

Langendorff perfusion, cardiac magnetic resonance imaging, diffusion tensor imaging, proton spectroscopy, radiofrequency coil, Animals, Equipment Design, Heart, Image Enhancement, Magnetic Resonance Imaging, Rats, Rats, Sprague-Dawley, Signal-To-Noise Ratio