Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Background: Metformin is a first-line oral agent used in the treatment of type 2 diabetes, but glycaemic response to this drug is highly variable. Understanding the genetic contribution to metformin response might increase the possibility of personalising metformin treatment. We aimed to establish the heritability of glycaemic response to metformin using the genome-wide complex trait analysis (GCTA) method. Methods: In this GCTA study, we obtained data about HbA 1c concentrations before and during metformin treatment from patients in the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) study, which includes a cohort of patients with type 2 diabetes and is linked to comprehensive clinical databases and genome-wide association study data. We applied the GCTA method to estimate heritability for four definitions of glycaemic response to metformin: absolute reduction in HbA 1c ; proportional reduction in HbA 1c ; adjusted reduction in HbA 1c ; and whether or not the target on-treatment HbA 1c of less than 7% (53 mmol/mol) was achieved, with adjustment for baseline HbA 1c and known clinical covariates. Chromosome-wise heritability estimation was used to obtain further information about the genetic architecture. Findings: 5386 individuals were included in the final dataset, of whom 2085 had enough clinical data to define glycaemic response to metformin. The heritability of glycaemic response to metformin varied by response phenotype, with a heritability of 34% (95% CI 1-68; p=0·022) for the absolute reduction in HbA 1c , adjusted for pretreatment HbA 1c . Chromosome-wise heritability estimates suggest that the genetic contribution is probably from individual variants scattered across the genome, which each have a small to moderate effect, rather than from a few loci that each have a large effect. Interpretation: Glycaemic response to metformin is heritable, thus glycaemic response to metformin is, in part, intrinsic to individual biological variation. Further genetic analysis might enable us to make better predictions for stratified medicine and to unravel new mechanisms of metformin action. Funding: Wellcome Trust. © 2014 Elsevier Ltd.

Original publication

DOI

10.1016/S2213-8587(14)70050-6

Type

Journal article

Journal

The Lancet Diabetes and Endocrinology

Publication Date

01/01/2014

Volume

2

Pages

481 - 487