Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The creatine kinase (CK) system is thought to play an integral role in maintaining levels of chemical energy in the form of ATP, which is essential for normal cardiac function. In the failing heart, it has long been established that multiple components of CK energy metabolism are commonly impaired and that these correlate with disease severity. A recent study published in Science Translational Medicine adds significantly to this body of evidence by demonstrating that the rate of ATP transfer via CK, measured noninvasively by magnetic resonance spectroscopy, is an independent predictor of adverse clinical outcome in patients with nonischemic cardiomyopathy. This finding invites speculation on the future role of metabolic imaging for risk stratification in patients with heart failure. The authors further assert an implied causal role for energetics in disease progression. Although this is not supported by recent findings in loss-of-function mouse models, there is, nonetheless, a strong argument for the development of novel metabolic therapies for the failing heart.

Original publication

DOI

10.1161/CIRCRESAHA.114.303551

Type

Journal article

Journal

Circ Res

Publication Date

11/04/2014

Volume

114

Pages

1228 - 1230

Keywords

Adenosine Triphosphate, Creatine Kinase, Female, Heart Failure, Humans, Male