Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The eukaryotic cell membrane is connected to a dense actin rich cortex. We present FCS and STED experiments showing that dense membrane bound actin networks have severe influence on lipid phase separation. A minimal actin cortex was bound to a supported lipid bilayer via biotinylated lipid streptavidin complexes (pinning sites). In general, actin binding to ternary membranes prevented macroscopic liquid-ordered and liquid-disordered domain formation, even at low temperature. Instead, depending on the type of pinning lipid, an actin correlated multi-domain pattern was observed. FCS measurements revealed hindered diffusion of lipids in the presence of an actin network. To explain our experimental findings, a new simulation model is proposed, in which the membrane composition, the membrane curvature, and the actin pinning sites are all coupled. Our results reveal a mechanism how cells may prevent macroscopic demixing of their membrane components, while at the same time regulate the local membrane composition. DOI: http://dx.doi.org/10.7554/eLife.01671.001.

Original publication

DOI

10.7554/eLife.01671

Type

Journal article

Journal

Elife

Publication Date

18/03/2014

Volume

3

Keywords

STED microscopy, cortical actin, fluorescence correlation spectroscopy, lipid phase separation, membrane organization, pinning sites, Actins, Computer Simulation, Lipid Metabolism, Membranes, Microscopy, Fluorescence, Models, Theoretical, Protein Binding