Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Periventricular nodular heterotopia is caused by defective neuronal migration that results in heterotopic neuronal nodules lining the lateral ventricles. Mutations in filamin A (FLNA) or ADP-ribosylation factor guanine nucleotide-exchange factor 2 (ARFGEF2) cause periventricular nodular heterotopia, but most patients with this malformation do not have a known aetiology. Using comparative genomic hybridization, we identified 12 patients with developmental brain abnormalities, variably combining periventricular nodular heterotopia, corpus callosum dysgenesis, colpocephaly, cerebellar hypoplasia and polymicrogyria, harbouring a common 1.2 Mb minimal critical deletion in 6q27. These anatomic features were mainly associated with epilepsy, ataxia and cognitive impairment. Using whole exome sequencing in 14 patients with isolated periventricular nodular heterotopia but no copy number variants, we identified one patient with periventricular nodular heterotopia, developmental delay and epilepsy and a de novo missense mutation in the chromosome 6 open reading frame 70 (C6orf70) gene, mapping in the minimal critical deleted region. Using immunohistochemistry and western blots, we demonstrated that in human cell lines, C6orf70 shows primarily a cytoplasmic vesicular puncta-like distribution and that the mutation affects its stability and subcellular distribution. We also performed in utero silencing of C6orf70 and of Phf10 and Dll1, the two additional genes mapping in the 6q27 minimal critical deleted region that are expressed in human and rodent brain. Silencing of C6orf70 in the developing rat neocortex produced periventricular nodular heterotopia that was rescued by concomitant expression of wild-type human C6orf70 protein. Silencing of the contiguous Phf10 or Dll1 genes only produced slightly delayed migration but not periventricular nodular heterotopia. The complex brain phenotype observed in the 6q terminal deletion syndrome likely results from the combined haploinsufficiency of contiguous genes mapping to a small 1.2 Mb region. Our data suggest that, of the genes within this minimal critical region, C6orf70 plays a major role in the control of neuronal migration and its haploinsufficiency or mutation causes periventricular nodular heterotopia.

Original publication

DOI

10.1093/brain/awt249

Type

Journal article

Journal

Brain

Publication Date

11/2013

Volume

136

Pages

3378 - 3394

Keywords

6q terminal deletion syndrome, C6orf70 gene, brain malformations, epilepsy, periventricular nodular heterotopia, Abnormalities, Multiple, Adolescent, Adult, Animals, Brain, Child, Chromosome Deletion, Chromosomes, Human, Pair 6, Cohort Studies, Developmental Disabilities, Epilepsy, Exome, Female, Haploinsufficiency, Humans, Infant, Magnetic Resonance Imaging, Male, Malformations of Cortical Development, Group II, Mutation, Periventricular Nodular Heterotopia, Rats, Rats, Wistar, Syndrome