Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Multiple rare variants either within or across genes have been hypothesised to collectively influence complex human traits. The increasing availability of high throughput sequencing technologies offers the opportunity to study the effect of rare variants on these traits. However, appropriate and computationally efficient analytical methods are required to account for collections of rare variants that display a combination of protective, deleterious and null effects on the trait. We have developed a novel method for the analysis of rare genetic variation in a gene, region or pathway that, by simply aggregating summary statistics at each variant, can: (i) test for the presence of a mixture of effects on a trait; (ii) be applied to both binary and quantitative traits in population-based and family-based data; (iii) adjust for covariates to allow for non-genetic risk factors and; (iv) incorporate imputed genetic variation. In addition, for preliminary identification of promising genes, the method can be applied to association summary statistics, available from meta-analysis of published data, for example, without the need for individual level genotype data. Through simulation, we show that our method is immune to the presence of bi-directional effects, with no apparent loss in power across a range of different mixtures, and can achieve greater power than existing approaches as long as summary statistics at each variant are robust. We apply our method to investigate association of type-1 diabetes with imputed rare variants within genes in the major histocompatibility complex using genotype data from the Wellcome Trust Case Control Consortium.

Original publication

DOI

10.1371/journal.pgen.1003694

Type

Journal article

Journal

PLoS Genet

Publication Date

2013

Volume

9

Keywords

Data Interpretation, Statistical, Genetic Variation, Genome-Wide Association Study, Genotype, High-Throughput Nucleotide Sequencing, Humans, Phenotype, Quantitative Trait Loci