Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The aetiopathogenesis of acute and chronic myocarditis is rather complex as a great variety of infectious agents can induce cardiac inflammation. Moreover, many systemic and autoimmune diseases such as sarcoidosis, giant cell myocarditis and systemic lupus erythematodes, drugs and toxins have been described as non-infectious causes of inflammatory heart disorders. Myocarditis may cause sudden death and lead to dilated cardiomyopathy. The correct and timely diagnosis of myocarditis is still a difficult clinical challenge, since the clinical spectrum of myocarditis is broad and comprises (amongst others) even those patients with no symptoms or those presenting with acute cardiogenic shock. Although endomyocardial biopsy still represents the gold standard for the diagnosis of myocarditis, new non-invasive imaging techniques such as cardiovascular magnetic resonance (CMR) imaging promise the non-invasive diagnosis of myocarditis. Considering the hallmarks of acute and chronic myocarditis (accumulation of inflammatory cells; swelling, necrosis and/or apoptosis of cardiomyocytes; increase in extracellular space and water content; myocardial remodelling with fibrotic tissue replacement), an imaging modality such as CMR that enables non-invasive detection of changes in myocardial tissue composition is highly valuable and welcome. This review will focus on the 'clinical role' of CMR in the diagnosis of acute and chronic myocarditis.

Original publication




Journal article


Heart Fail Rev

Publication Date





747 - 760


Acute Disease, Animals, Biopsy, Needle, Cardiac Imaging Techniques, Cardiomyopathy, Dilated, Chronic Disease, Female, Gadolinium, Humans, Immunohistochemistry, Magnetic Resonance Imaging, Cine, Male, Mice, Myocarditis, Radiographic Image Interpretation, Computer-Assisted, Risk Assessment, Role, Sensitivity and Specificity, Severity of Illness Index, Survival Rate