Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Bcr-Abl, the causative agent of chronic myelogenous leukemia (CML), localizes in the cytoplasm where its oncogenic signaling leads to proliferation of cells. If forced into the nucleus Bcr-Abl causes apoptosis. To achieve nuclear translocation, binding domains for capture of Bcr-Abl were generated and attached to proteins with signals destined for the nucleus. These resulting proteins would be capable of binding and translocating endogenous Bcr-Abl to the nucleus. METHODS: Bcr-Abl was targeted at 3 distinct domains for capture: by construction of high affinity intracellular antibody domains (iDabs) to regions of Bcr-Abl known to promote cytoplasmic retention, via its coiled coil domain (CC), and through a naturally occurring protein-protein interaction domain (RIN1). These binding domains were then tested for their ability to escort Bcr-Abl into the nucleus using a "protein switch" or attachment of 4 nuclear localization signals (NLSs). RESULTS: Although RIN1, ABI7-iDab, and CCmut3 constructs all produced similar colocalization with Bcr-Abl, only 4NLS-CCmut3 produced efficient nuclear translocation of Bcr-Abl. CONCLUSIONS: We demonstrate that a small binding domain can be used to control the subcellular localization of Bcr-Abl, which may have implications for CML therapy. Our ultimate future goal is to change the location of critical proteins to alter their function.

Original publication

DOI

10.1007/s11095-011-0654-8

Type

Journal article

Journal

Pharm Res

Publication Date

04/2012

Volume

29

Pages

1098 - 1109

Keywords

Animals, Apoptosis, Binding Sites, COS Cells, Cell Growth Processes, Cell Nucleus, Cells, Cultured, Cercopithecus aethiops, Cytoplasm, Fusion Proteins, bcr-abl, Humans, Leukemia, Myelogenous, Chronic, BCR-ABL Positive, Mice, Protein Binding, Protein Interaction Domains and Motifs, Protein Structure, Tertiary, Protein Transport, Signal Transduction