Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

11β-Hydroxysteroid dehydrogenase type 1 (11βHSD1) is a therapeutic target in metabolic syndrome because it catalyses reductase regeneration of cortisol from cortisone in adipose and liver. 11βHSD1 can also catalyze the reverse dehydrogenase reaction in vitro (e.g., if cofactor is limited). We used stable isotope tracers to test the hypothesis that both 11βHSD1-reductase and -dehydrogenase activities occur in human metabolic tissues in vivo. 1,2-[(2)H](2)-Cortisone (d2-cortisone) was validated as a tracer for 11β-dehydrogenase activity and its inhibition by licorice. d2-Cortisone and 9,11,12,12-[(2)H](4)-cortisol (d4-cortisol) (to measure 11β-reductase activity) were coinfused and venous samples obtained from skeletal muscle, subcutaneous adipose (n = 6), and liver (n = 4). Steroids were measured by liquid chromatography-tandem mass spectrometry and arteriovenous differences adjusted for blood flow. Data are means ± SEM. 11β-Reductase and -dehydrogenase activities were detected in muscle (cortisol release 19.7 ± 4.1 pmol/100 mL/min, d3-cortisol 5.9 ± 1.8 pmol/100 mL/min, and cortisone 15.2 ± 5.8 pmol/100 mL/min) and splanchnic (cortisol 64.0 ± 11.4 nmol/min, d3-cortisol 12.9 ± 2.1 nmol/min, and cortisone 19.5 ± 2.8 nmol/min) circulations. In adipose, dehydrogenase was more readily detected than reductase (cortisone release 38.7 ± 5.8 pmol/100 g/min). Active recycling between cortisol and cortisone in metabolic tissues in vivo may facilitate dynamic control of intracellular cortisol but makes consequences of dysregulation of 11βHSD1 transcription in obesity and diabetes unpredictable. Disappointing efficacy of 11βHSD1 inhibitors in phase II studies could be explained by lack of selectivity for 11β-reductase.

Original publication




Journal article



Publication Date





1357 - 1364


Adult, Cortisone, Humans, Hydrocortisone, Liver, Male, Muscle, Skeletal, Splanchnic Circulation, Subcutaneous Fat