Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The glucoregulatory hormones insulin and glucagon are released from the β- and α-cells of the pancreatic islets. In both cell types, secretion is secondary to firing of action potentials, Ca2+-influx via voltage-gated Ca2+-channels, elevation of [Ca2+]i and initiation of Ca2+-dependent exocytosis. Here we discuss the mechanisms that underlie the reciprocal regulation of insulin and glucagon secretion by changes in plasma glucose, the roles played by different types of voltage-gated Ca2+-channel present in α- and β-cells and the modulation of hormone secretion by Ca2+-dependent and -independent processes. We also consider how subtle changes in Ca2+-signalling may have profound impact on β-cell performance and increase risk of developing type-2 diabetes. © 2011 Elsevier Ltd.

Original publication

DOI

10.1016/j.ceca.2011.11.006

Type

Journal article

Journal

Cell Calcium

Publication Date

01/01/2012

Volume

51

Pages

300 - 308