Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Burkitt's lymphoma (BL), an EBV-associated tumour, occurs at high incidence in populations where malaria is holoendemic. Previous studies in one such population suggested that acute P.falciparum infection impairs EBV-specific T-cell surveillance, allowing expansion of EBV infected B-cells from which BL derives. We re-examined the situation in the same area, The Gambia, after a reduction in malaria endemicity. Cellular immune responses to EBV were measured in children with uncomplicated malaria before (day 0) and after treatment (day 28), comparing EBV genome loads in blood and EBV-specific CD8(+) T-cell numbers (assayed by MHC Class I tetramers and IFNγ ELISPOTS) with those seen in age- and sex-matched healthy controls. No significant changes were seen in EBV genome loads, percentage of EBV-specific CD8(+) T-cells and IFNγ producing T-cells in acute versus convalescent samples, nor any difference versus controls. Regression assays performed also no longer detected any impairment of EBV-specific T-cell surveillance. Acute uncomplicated malaria infection no longer alters EBV-specific immune responses in children in The Gambia. Given the recent decline in malaria incidence in that country, we hypothesise that gross disturbance of the EBV-host balance may be a specific effect of acute malaria only in children with a history of chronic/recurrent malaria challenge.

Original publication

DOI

10.1371/journal.pone.0031142

Type

Journal article

Journal

PLoS One

Publication Date

2012

Volume

7

Keywords

Case-Control Studies, Child, Child, Preschool, Endemic Diseases, Epstein-Barr Virus Infections, Female, Gambia, Herpesvirus 4, Human, Host-Pathogen Interactions, Humans, Immunity, Cellular, Incidence, Malaria, Male, Plasmodium falciparum, T-Lymphocytes, Viral Load