Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The regulation of intracellular pH (pHi) and its role in the insulin-secretory process were evaluated, by using the clonal insulin-secreting cell line RINm5F. Glyceraldehyde, lactate and dihydroxyacetone decreased pHi, but only the first two released insulin. In the presence of extracellular Na+ the cells counteracted the acidification. Blocking the Na+/H+ exchange in acidic cells resulted in a drastic further lowering of pHi, an effect not obtained under basal conditions. Whereas glyceraldehyde depolarized the cells, lactate was without effect. Dihydroxyacetone hyperpolarized the cells in the presence of extracellular Na+, but this effect disappeared when Na+ was excluded from the medium. Stimulation with glyceraldehyde resulted in increased free cytoplasmic Ca2+ concentration ([Ca2+]i). Dihydroxyacetone and lactate had no effect on [Ca2+]i in the presence of Na+, but lactate induced a decrease in [Ca2+]i in Na(+)-deficient medium. In RINm5F cells the activity of the Na+/H+ antiport could not be augmented by activation of protein kinase C (PKC). Hence, in insulin-secreting cells a PKC-insensitive Na+/H+ antiport is the major mechanism restoring a decrease in pHi. Acidification itself does not affect membrane potential, but may directly interact with the mechanisms regulating exocytosis.

Original publication

DOI

10.1042/bj2870059

Type

Journal article

Journal

Biochem J

Publication Date

01/10/1992

Volume

287 ( Pt 1)

Pages

59 - 66

Keywords

Adenosine Triphosphate, Animals, Calcium, Cell Line, Dihydroxyacetone, Glyceraldehyde, Hydrogen-Ion Concentration, In Vitro Techniques, Insulin, Insulin Secretion, Lactates, Membrane Potentials, Rats, Secretory Rate, Sodium, Tetradecanoylphorbol Acetate