Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A molecular genetic diagnosis is now possible for > 80% of patients with monogenic diabetes. This not only provides accurate information regarding inheritance and prognosis, but can inform treatment decisions and improve clinical outcome. Mild fasting hyperglycaemia caused by heterozygous GCK mutations rarely requires pharmacological intervention, whereas patients with mutations in the genes encoding the transcription factors HNF-1alpha and HNF-4alpha respond well to low doses of sulphonylureas. The recent discovery that mutations in the KCNJ11 gene (encoding the Kir6.2 subunit of the K(ATP) channel) are the most common cause of permanent neonatal diabetes, has enabled children to stop insulin injections and achieve improved glycaemic control with high doses of sulphonylurea tablets. Molecular genetic testing is an essential prerequisite for the pharmacogenetic treatment of monogenic diabetes.

Original publication




Journal article


Expert Opin Pharmacother

Publication Date





1759 - 1767


Age of Onset, Animals, Diabetes Mellitus, Disease Progression, Humans, Insulin, Insulin Secretion, Insulin-Secreting Cells