Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Dronpa is a novel GFP-like fluorescent protein with exceptional light-controlled switching properties. It may be reversibly switched between a fluorescent on-state and a nonfluorescent off-state by irradiation with light. To elucidate the molecular basis of the switching mechanism, we generated reversibly switchable Dronpa protein crystals. Using these crystals we determined the elusive dark-state structure of Dronpa at 1.95-A resolution. We found that the photoswitching results in a cis-trans isomerization of the chromophore accompanied by complex structural rearrangements of four nearby amino acid residues. Because of this cascade of intramolecular events, the chromophore is exposed to distinct electrostatic surface potentials, which are likely to influence the protonation equilibria at the chromophore. We suggest a comprehensive model for the light-induced switching mechanism, connecting a cascade of structural rearrangements with different protonation states of the chromophore.

Original publication

DOI

10.1073/pnas.0700629104

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

07/08/2007

Volume

104

Pages

13005 - 13009

Keywords

Crystallization, Fluorescence, Fluorescent Dyes, Isomerism, Luminescent Proteins