Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We establish fluorescence fluctuation spectroscopy (FFS) with nanoscale detection volumes generated by stimulated emission depletion. Our method applies fluorescence correlation spectroscopy and fluorescence intensity distribution analysis to extract molecular information about mobilities and fluorescence emission in solution. The combination of correlation analysis with that of photon intensity distributions reveals a fivefold squeezing of the detection volume over current diffraction-limited systems, which is in full agreement with the simultaneously demonstrated 25-fold reduction in (axial) focal transit time. Our method significantly extends the potential of far-field FFS, including for the noninvasive investigation of molecular reactions at higher concentrations.

Original publication

DOI

10.1103/PhysRevLett.94.178104

Type

Journal article

Journal

Phys Rev Lett

Publication Date

06/05/2005

Volume

94

Keywords

Biophysics, Fluorescent Dyes, Models, Statistical, Normal Distribution, Photons, Spectrometry, Fluorescence, Time Factors