Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Mutations in the glucokinase (GK) gene cause defects in blood glucose homeostasis. In some cases (V62M and G72R), the phenotype cannot be explained by altered enzyme kinetics or protein instability. We used transient and stable expression of green fluorescent protein (GFP) GK chimaeras in MIN6 beta-cells to study the phenotype defect of V62M and G72R. GK activity in lysates of MIN6 cell lines stably expressing wild-type or mutant GFP GK showed the expected affinity for glucose and response to pharmacological activators, indicating the expression of catalytically active enzymes. MIN6 cells stably expressing GFP V62M or GFP G72R had a lower GK activity-to-GK immunoreactivity ratio and GK activity-to-GK mRNA ratio but not GK immunoreactivity-to-GK mRNA ratio than wild-type GFP GK. Heterologous expression of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2/FDP2) in cell lines increased GK activity for wild-type GK and V62M but not for G72R, whereas expression of liver GK regulatory protein (GKRP) increased GK activity for wild type but not V62M or G72R. Lack of interaction of these mutants with GKRP was also evident in hepatocyte transfections from the lack of nuclear accumulation. These results suggest that cellular loss of GK catalytic activity rather than impaired translation or enhanced protein degradation may account for the hyperglycemia in subjects with V62M and G72R mutations.

Original publication

DOI

10.2337/db06-1151

Type

Journal article

Journal

Diabetes

Publication Date

07/2007

Volume

56

Pages

1773 - 1782

Keywords

Animals, Catalysis, Cell Line, Chimera, Glucokinase, Humans, Insulin-Secreting Cells, Male, Mice, Mice, Inbred C57BL, Mutation