Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Hepcidin is the main regulator of systemic iron homeostasis and is primarily produced by the liver but is also expressed, at the mRNA-level, in periphery tissues including the subcutaneous and visceral adipose tissue. Obesity is associated with elevated hepcidin concentrations and iron depletion suggesting that the exaggerated fat mass in obesity could contribute significantly to circulating hepcidin levels consequently altering iron homeostasis. The objective of this study was to determine if abdominal subcutaneous adipose tissue (AbScAT) releases hepcidin in vivo and if release is modified by obesity. Arterio-venous differences in concentrations of hepcidin were measured across AbScAT in 9 obese and 9 lean adults. Overall (n = 18), mean plasma hepcidin concentrations were significantly higher in arterialized compared to AbScAT venous samples [mean difference (arterialized-AbScAT venous plasma hepcidin) = 4.9 ± 9.6 ng/mL, P = 0.04]. Net regional release was not calculated because mean venous plasma hepcidin concentrations were lower than mean arterialized concentrations indicating no net release. Significant correlations between AbScAT venous and arterialized plasma hepcidin concentrations with anthropometric variables were not observed. Findings from this vein drainage study suggest there is no net release of hepcidin from the AbScAT depot and thereby no ability to signal systemically, even in obesity.

Original publication

DOI

10.1100/2011/634861

Type

Journal article

Journal

ScientificWorldJournal

Publication Date

2011

Volume

11

Pages

2197 - 2206

Keywords

adipose tissue, hepcidin, in vivo secretion, iron homeostasis, obesity, Adult, Antimicrobial Cationic Peptides, Case-Control Studies, Female, Hepcidins, Homeostasis, Humans, Iron, Male, Middle Aged, Obesity, RNA, Messenger, Subcutaneous Fat