Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The study of rare monogenic forms of diabetes and pancreatic B-cell dysfunction provides an unrivalled opportunity to link a specific change in gene function with precise cellular consequences and clinical phenotype in humans. Over the past 20 years there has been considerable success in determining the genetic aetiology of a number of rare monogenic forms of diabetes, which has had a significant impact on both our understanding of normal physiology and on translational medicine. The impact of these discoveries has been substantial, with insights into both developmental biology and normal physiology. There are clear examples where determining the genetic aetiology for individuals with rare monogenic subtypes of diabetes has led to improved treatment. Although formerly in the shadow of the monogenic diabetes field, over the past 3 years there has been staggering progress in our understanding of the genetic basis of Type 2 diabetes. This has been largely as a result of genome-wide association studies and has seen the list of 'diabetes susceptibility genes' increase from three to close to 20. There is now encouraging evidence to support a potential role for genetics in determining the response of individuals with Type 2 diabetes to different therapeutic options. One of the challenges that lies ahead is determining how the non-coding genetic variants exert their pathogenicity. It is possible that parallels can be drawn from functional work on rare regulatory mutations causing monogenic forms of diabetes. However, it is more likely that comprehensive approaches will be necessary.

Original publication




Journal article


Diabet Med

Publication Date





1083 - 1089


Blood Glucose, Diabetes Mellitus, Type 2, Gene Expression Regulation, Genetic Predisposition to Disease, Genetic Variation, Humans