Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Many angiosperms use specific interactions between pollen and pistil proteins as "self" recognition and/or rejection mechanisms to prevent self-fertilization. Self-incompatibility (SI) is encoded by a multiallelic S locus, comprising pollen and pistil S-determinants [1, 2]. In Papaver rhoeas, cognate pistil and pollen S-determinants, PrpS, a pollen-expressed transmembrane protein, and PrsS, a pistil-expressed secreted protein [3, 4], interact to trigger a Ca2+-dependent signaling network [5-10], resulting in inhibition of pollen tube growth, cytoskeletal alterations [11-13], and programmed cell death (PCD) [14, 15] in incompatible pollen. We introduced the PrpS gene into Arabidopsis thaliana, a self-compatible model plant. Exposing transgenic A. thaliana pollen to recombinant Papaver PrsS protein triggered remarkably similar responses to those observed in incompatible Papaver pollen: S-specific inhibition and hallmark features of Papaver SI [11-15]. Our findings demonstrate that Papaver PrpS is functional in a species with no SI system that diverged ∼140 million years ago [16]. This suggests that the Papaver SI system uses cellular targets that are, perhaps, common to all eudicots and that endogenous signaling components can be recruited to elicit a response that most likely never operated in this species. This will be of interest to biologists interested in the evolution of signaling networks in higher plants. © 2012 Elsevier Ltd All rights reserved.

Original publication




Journal article


Current Biology

Publication Date





154 - 159