Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The thymic microenvironment contains a mixture of phenotypically distinct epithelial cells of varied functions, some of which are unknown. In an attempt to understand their relevance to T cell differentiation in the thymus, human thymic epithelial cell clones from both fetal (SM3-SM5) and postnatal (SM6) thymus were produced by using a defective recombinant retroviral vector encoding the simian virus 40 large T antigen and the neomycin resistance gene. The presence of keratins 8 and 18, desmosomes, and tonofilaments confirmed the epithelial origin of the cell strains. The cells expressed Thy-1 and HLA-Class I at high levels, showed weak-expression antigens defined by TE3B and A2B5, and low to negligible levels of the MR19-defined molecule. When compared with the phenotype of thymic epithelial cells in situ, the cell strains appear to be derived from neuroendocrine components in the outer cortical region of the human thymus. The use of retroviral vectors to transform human thymic epithelium was considerably more efficient than transfection with a plasmid carrying the origin of replication-defective SV40 large T gene. In the latter case, only two cell strains with subcapsular epithelial phenotypes were derived from fetal thymus. With the retroviral vectors, epithelial cell strains could, for the first time, be generated from human postnatal thymus as well as from fetal thymus.

Original publication




Journal article


Cellular immunology

Publication Date





456 - 472


Medical Oncology Laboratory, Imperial Cancer Research Fund, London, Great Britain.


Epithelium, Thymus Gland, Cells, Cultured, Clone Cells, Humans, Simian virus 40, Cell Transformation, Viral, Cell Division, Pregnancy, Phenotype, Genetic Vectors, Female, Keratins