Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Severe COVID-19 disease is associated with thrombotic complications and extensive fibrin deposition. Here, we investigate whether the haemostatic complications in COVID-19 disease arise due to dysregulation of the fibrinolytic system. METHODS: This prospective study analysed fibrinolytic profiles of 113 patients hospitalized with COVID-19 disease with 24 patients with non-COVID-19 respiratory infection and healthy controls. Antigens were quantified by Ella™ system or ELISA, clot lysis by turbidimetric assay, and PAI-1/plasmin activity using chromogenic substrates. Clot structure was visualised by confocal microscopy. RESULTS: PAI-1 and its cofactor, vitronectin, are significantly elevated in COVID-19 disease compared to non-COVID-19 respiratory infection and healthy control groups. Thrombin activatable fibrinolysis inhibitor and tissue plasminogen activator were elevated in COVID-19 disease relative to healthy controls. PAI-1 and tPA were associated with more severe COVID-19 disease severity. Clots formed from COVID-19 plasma demonstrate an altered fibrin network, with attenuated fibre length and increased branching. Functional studies reveal that plasmin generation and clot lysis were markedly attenuated in COVID-19 disease, while PAI-1 activity was elevated. Clot lysis time significantly correlated with PAI-1 levels. Stratification of COVID-19 samples according to PAI-1 levels reveals significantly faster lysis when using the PAI-1 resistant tPA variant, Tenecteplase, over Alteplase lysis. DISCUSSION: We demonstrate that the suboptimal fibrinolytic response in COVID-19 disease is directly attributable to elevated levels of PAI-1 which attenuate plasmin generation. These data highlight the important prognostic potential of PAI-1 and the potential to utilise pre-existing drugs, such as Tenecteplase to treat COVID-19 disease and potentially other respiratory diseases.

Original publication

DOI

10.1111/jth.15806

Type

Journal article

Journal

J Thromb Haemost

Publication Date

03/07/2022

Keywords

COVID-19, Fibrin, Fibrinolysis, PAI-1, Vitronectin