Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: Cardiac diffusion tensor imaging (DTI) is an emerging technique for the in vivo characterisation of myocardial microstructure, and there is a growing need for its validation and standardisation. We sought to establish accuracy, precision, repeatability and reproducibility of state-of-the-art pulse sequences for cardiac DTI between ten centres internationally. METHODS: Phantoms comprising 0-20% polyvinylpyrrolidone (PVP) were scanned with DTI using a product pulsed gradient spin echo (PGSE; N=10 sites) sequence, and a custom motion-compensated spin echo (SE; N=5) or stimulated echo (STEAM; N=5) sequence suitable for cardiac DTI in vivo. A second identical scan was performed 1-9 days post, and the data analysed centrally. RESULTS: The average mean diffusivities (MD) in 0% PVP were (1.124, 1.130, 1.113) × 10-3 mm2 /s for PGSE, SE and STEAM respectively, and accurate to within 1.5% of reference data from literature. The coefficients of variation in MD across sites were 2.6%, 3.1%, 2.1% for PGSE, SE and STEAM, and were similar to previous studies using only PGSE. Reproducibility in MD was excellent, with mean differences in PGSE, SE and STEAM of (0.3 ± 2.3, 0.24 ± 0.95, 0.52 ± 0.58) × 10-5 mm2 /s (mean ± 1.96SD). CONCLUSION: We show that custom sequences for cardiac DTI provide accurate, precise, repeatable and reproducible measurements. Further work in anisotropic and/or deforming phantoms is warranted.

Original publication




Journal article


NMR Biomed

Publication Date



Cardiac DTI, isotropic phantom, multi-centre, polyvinylpyrrolidone, pulse sequence validation, reproducibility