Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. Autism spectrum disorder (ASD) is a highly complex neurodevelopmental condition that is accompanied by neuroanatomical differences on the macroscopic and microscopic level. Findings from histological, genetic, and more recently in vivo neuroimaging studies converge in suggesting that neuroanatomical abnormalities, specifically around the gray-white matter (GWM) boundary, represent a crucial feature of ASD. However, no research has yet characterized the GWM boundary in ASD based on measures of diffusion. Here, we registered diffusion tensor imaging data to the structural T1-weighted images of 92 adults with ASD and 92 matched neurotypical controls in order to examine between-group differences and group-by-sex interactions in fractional anisotropy and mean diffusivity sampled at the GWM boundary, and at different sampling depths within the superficial white and into the gray matter. As hypothesized, we observed atypical diffusion at and around the GWM boundary in ASD, with between-group differences and group-by-sex interactions depending on tissue class and sampling depth. Furthermore, we identified that altered diffusion at the GWM boundary partially (i.e., ~50%) overlapped with atypical gray-white matter tissue contrast in ASD. Our study thus replicates and extends previous work highlighting the GWM boundary as a crucial target of neuropathology in ASD, and guides future work elucidating etiological mechanisms.

Original publication

DOI

10.1002/hbm.25237

Type

Journal article

Journal

Human Brain Mapping

Publication Date

01/02/2021

Volume

42

Pages

467 - 484