Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Macrophages are mononuclear phagocytes derived from haematopoietic progenitors that are widely distributed throughout the body. These cells participate in both innate and adaptive immune responses and lie central to the processes of inflammation, development, and homeostasis. Macrophage physiology varies depending on the environment in which they reside and they exhibit rapid functional adaption in response to external stimuli. To study macrophages in vitro, cells are typically cultured ex vivo from the peritoneum or alveoli, or differentiated from myeloid bone marrow progenitor cells to form bone marrow-derived macrophages (BMDMs). BMDMs represent an efficient and cost-effective means of studying macrophage biology. However, the inherent sensitivity of macrophages to biochemical stimuli (such as cytokines, metabolic intermediates, and RNS/ROS) makes it imperative to control experimental conditions rigorously. Therefore, the aim of this study was to establish an optimised and standardised method for the isolation and culture of BMDMs. We used classically activated macrophages isolated from WT and nitric oxide (NO)-deficient mice to develop a standardised culture method, whereby the constituents of the culture media are defined. We then methodically compared our standardised protocol to the most commonly used method of BMDM culture to establish an optimal protocol for the study of nitric oxide (NO)-redox biology and immunometabolism in vitro.

Original publication

DOI

10.1016/j.niox.2020.04.005

Type

Journal article

Journal

Nitric Oxide

Publication Date

01/08/2020

Volume

100-101

Pages

17 - 29

Keywords

MCSF, Macrophage, Nitric oxide, Tetrahydrobiopterin, Animals, Biopterin, Cell Culture Techniques, Cell Differentiation, Female, Granulocyte-Macrophage Colony-Stimulating Factor, Macrophages, Male, Mice, Inbred C57BL, Mice, Transgenic, Nitric Oxide