Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIMS: Increased Ankyrin Repeat Domain 1 (ANKRD1) levels linked to gain of function mutations have been associated to total anomalous pulmonary venous return and adult cardiomyopathy occurrence in humans. The link between increased ANKRD1 level and cardiac structural and functional disease is not understood. To get insight into this problem, we have generated a gain of function ANKRD1 mouse model by overexpressing ANKRD1 in the myocardium. METHODS AND RESULTS: Ankrd1 is expressed non-homogeneously in the embryonic myocardium, with a dynamic nucleo-sarcomeric localization in developing cardiomyocytes. ANKRD1 transgenic mice present sinus venosus defect, which originates during development by impaired remodelling of early embryonic heart. Adult transgenic hearts develop diastolic dysfunction with preserved ejection fraction, which progressively evolves into heart failure, as shown histologically and haemodynamically. Transgenic cardiomyocyte structure, sarcomeric assembly, and stability are progressively impaired from embryonic to adult life. Postnatal transgenic myofibrils also present characteristic functional alterations: impaired compliance at neonatal stage and impaired lusitropism in adult hearts. Altogether, our combined analyses suggest that impaired embryonic remodelling and adult heart dysfunction in ANKRD1 transgenic mice present a common ground of initial cardiomyocyte defects, which are exacerbated postnatally. Molecular analysis showed transient activation of GATA4-Nkx2.5 transcription in early transgenic embryos and subsequent dynamic transcriptional modulation within titin gene. CONCLUSIONS: ANKRD1 is a fine mediator of cardiomyocyte response to haemodynamic load in the developing and adult heart. Increased ANKRD1 levels are sufficient to initiate an altered cellular phenotype, which is progressively exacerbated into a pathological organ response by the high ventricular workload during postnatal life. Our study defines for the first time a unifying picture for ANKRD1 role in heart development and disease and provides the first mechanistic link between ANKRD1 overexpression and cardiac disease onset.

Original publication

DOI

10.1093/cvr/cvz291

Type

Journal article

Journal

Cardiovasc Res

Publication Date

01/07/2020

Volume

116

Pages

1458 - 1472

Keywords

ANKRD1, Cardiomyocyte structure and contractility, Diastolic dysfunction, Sinus venosus congenital heart defect, Titin