Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Human anterior gradient proteins AGR2 and AGR3 are overexpressed in a variety of adenocarcinomas and are often secreted in cancer patients' specimens, which suggests a role for AGR proteins in intra and extracellular compartments. Although these proteins exhibit high sequence homology, AGR2 is predominantly described as a pro-oncogene and a potential prognostic biomarker. However, little is known about the function of AGR3. Therefore, the aim of the present study was to investigate the role of AGR3 in breast cancer. The results demonstrated that breast cancer cells secrete AGR3. Furthermore, it was revealed that extracellular AGR3 (eAGR3) regulates tumor cell adhesion and migration. The current study indicated that the pharmacological and genetic perturbation of Src kinase signaling, through treatment with Dasatinib (protein kinase inhibitor) or investigating cells that express a dominant-negative form of Src, significantly abrogated eAGR3-mediated breast cancer cell migration. Therefore, the results indicated that eAGR3 may control tumor cell migration via activation of Src kinases. The results of the present study indicated that eAGR3 may serve as a microenvironmental signaling molecule in tumor-associated processes.

Original publication




Journal article


Oncol Lett

Publication Date





4449 - 4456


Src family kinases, Src phosphorylation, adhesion, anterior gradient proteins, cancer, migration, secreted protein disulfide isomerase family