Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Eileen McNeill

MPharmacol (hons); PhD


Senior Postdoctoral Research Fellow

Understanding the early changes that occur as monocytes differentiate to become macrophages or are exposed to different stimuli is key to understanding how the biology of these cells can be harnessed therapeutically.

I joined the University of Oxford from the Cancer Research UK London Research Institute where I completed my PhD in Immunology and a short follow-up post-doc position.  Prior to this I obtained a Master of Pharmacology degree from the University of Bath, including a year in industry at GlaxoWellcome.  In my career to date I have studied myeloid cell biology in a range of inflammatory and infectious models from inflammation-induced skin cancer to bacterial infection to atherosclerosis.  My current research focuses on understanding the role of monocytes and macrophages in inflammation and disease.   

Monocytes and macrophages are highly plastic cells of the innate immune system that can drive both inflammatory and anti-inflammatory processes in disease, depending on their activation state.  Understanding the changes that occur as monocytes differentiate to become macrophages and as macrophages are exposed to different stimuli is key to understanding how the biology of these cells can be harnessed therapeutically.  My recent research has been in two main areas, monocyte recruitment to sites of vascular inflammation and the redox control of macrophage function by tetrahydrobiopterin.   

I have established key methods to study monocyte recruitment in vascular inflammation.  These include characterizing a novel GFP reporter mouse, the hCD68GFP mouse, in both health and vascular disease models.  Using cells from this mouse I perform adoptive transfer studies to look for the specific recruitment of the transferred monocytes and early changes that occur in these cells at sites of inflammation.  Tetrahydrobiopterin is an essential co-factor for nitric oxide synthase (NOS) enzymes that may have additional important functions. I have established in vitro systems to study primary macrophages that are deficient in tetrahydrobiopterin in the presence and absence of NOS expression.  I recently identified a key role for tetrahydrobiopterin in macrophage redox state and in the activation of the redox-regulated transcription factor NRF2.  I am currently studying the implications of this finding in disease models.

False False

Recent Publications

5 View 51 more »

ORCID

0000-0003-0971-9858