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Project outline 

The cardiometabolic diseases remain the major cause of mortality worldwide [1][2]. The etiology of 

these disorders involves the complex interaction of genetic and environmental factors that affect the 

physiology of multiple cell types across the human body [3]. To effectively address this complexity, 

new drug discovery approaches are needed to explore the vast combinatorial space of 

pharmacological interventions and intricate cellular phenotypes. At the Novo Nordisk Research 

Centre Oxford, cutting-edge technological platforms have been put in place to genetically perturb 

and deeply characterize the phenotype of various cellular models at scale. By combining high-

throughput imaging, transcriptomics, proteomics, and cell-functional assays to characterize the 

outcome of genetic and pharmacological perturbations, rich target perturbation landscapes are 

being built. However, these landscapes do not yet cover the entire human genome, and defining the 

most effective way to continue exploring the potentially druggable genome remains a challenge. 

This scenario sets a great opportunity for investigating active learning frameworks like [4], which 

select data points that are most likely to enhance our understanding, thereby optimizing resource 

allocation and facilitating a more efficient pathway to discovery. Our goal is to exploit the vast 

richness of multimodal deep cell phenotyping of limited perturbation examples to guide the 

increasing exploration of new batches of genetic perturbations and discover new biology.   

 

Deep generative models provide a natural framework for characterising cellular responses to genetic 

perturbations. For example, recent work in this area has proposed strategies to predict 

combinatorial perturbations outcomes [5] and how to additionally incorporate prior knowledge in 

the model [6]. However, existing methods are dataset-specific, lacking any mechanism to transfer 

knowledge across cell types, and rely on a single data modality. Leveraging insights from previous 

approach on text and image [7] and [8], our intention is to adapt multimodal generative models to 

the intricate domain of genetic sequences and expression data. This thoughtful expansion will see us 

harmonizing generative models, traditionally used in text and image processing, to the specific 

requirements of genomic data, aiming for a cohesive framework that can accurately predict cellular 

responses to various perturbations. The project will thus revolve around the following 3 work-

packages (WP):   

 

WP1: Representation learning. We have a track record of developing representation learning 

techniques, [9], [10], [11] and [12]. The focus will be on developing representations that more 
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accurately reflect the detailed patterns found in images, genetic sequences, and expression data. 

This will enhance our models' ability to reliably predict the outcomes of genetic perturbations, which 

is instrumental in identifying new drug targets with subtlety and precision. The prediction models 

will be formulated as joint probability distributions across the different data modalities to quantify 

prediction uncertainties and the mutual information between modalities.  

 

WP2: Active learning. The uncertainty of the model predictions is a key ingredient to develop an 

active learning framework [4][13]. In an “explore”-mode, it will inform the experimentalist which 

perturbations and measurements to run in the next cycle that will maximize the information gain. In 

an “exploit”-mode, it can be used to search for novel IP opportunities by examining the 

neighbourhood around known IPs.   

 

WP3:  Model extensions. A promising extension of the model framework consists of using 

biomedical knowledge graphs (biomedKGs) [14] to contextualize and guide the models. Some of the 

advances in KG analytics include coupling them with large language models (LLMs) [15]. In particular, 

the use of in-context learning prompting, which consists of task description, prompt and 

demonstrations (taken from the screening results of the previously analysed batch), on a LLM that 

has been enhanced in its inference step with the structured information in a biomedKG.  

 

We believe that the proposed project to develop foundational and causal deep-phenotypic cellular 

models, represents a significant step forward towards an AI-driven drug discovery pipeline. 
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