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Project outline

Background

In the last 10 years, GWAS has revolutionised our understanding of the inherited basis of disease and
we can now use human genetics for drug target discovery. The current challenge is to identify the
underlying causal genes, pathways and mechanisms. Al techniques, more particularly Neural
Networks (NNs), are transforming multiple engineering industries by revolutionizing our capacity to
analyse complex data [1,2]. They are also starting to be used in biology [3,4], medicine [5,6], and
genomics [7,8], where they hold considerable promise. The sensitivity of NNs becomes especially
acute where large amounts of information-rich data is available. This is particularly the case in
genomics, where deep genotyping data (e.g. Whole Genome Sequencing - WGS) is being made
available for ever-larger datasets of hundreds of thousands of individuals (e.g. UK Biobank). We have
started successfully applying neural networks to genetic data to capture non-linear effects and
interactions more readily than conventional statistical modelling. This success has been achieved with
the early NN architectures that emerged during 2010s — e.g. fully connected NNs, LSTMs, and
transformers. More recent and sophisticated algorithms, such as contrastive learning or
convolutional-transformer methods, have very recently been proposed and have achieved significant
breakthroughs in image recognition and language understanding. There are good reasons to explore
the applications of these newer architectures to genetics, as well as expanding the more traditional
ones that we are continuing to develop, because they could lead to new understanding of the genetic
architecture of traits of interest.

Aims

Here we propose leveraging (1) Artificial Intelligence (Al) techniques, (2) the wealth of large human
genomic datasets now available, (3) and our experience of applying Al to genetic data to identify
potential causal genes for cardiometabolic traits. The proteins encoded by these causal genes are
potential pharmacological targets for the treatment of cardiometabolic diseases, such as
atherosclerosis, diabetes, insulin resistance and non-alcoholic fatty liver disease.

Work to be undertaken
Building on this prior experience, we will further refine our fully connected NNs, recurrent NNs and
transformers, and adopt new architectures that have been transforming the field [9-11]
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The NNs will use whole exome and whole genome sequencing from UK Biobank [9], while other
comparable datasets will be used for validation. The fellow will be expected to lead a thorough
investigation of the optimal way to select variants for inclusion in the NN models. Approaches could
include, all 95% credible sets from fine-mapping approaches, polygenic risk scores, variants based on
functional annotations, or variants within a window containing the gene of interest . Fully NN methods
will also be explored to select the most relevant variants and genetic regions. Regions of interest will
then be fed to a NN with the objective of further decoding the genetic context and more complex
features, such as motifs associated with protein conformation, which NNs are proficient at detecting
(e.g. AlphaFold architecture) As example, this NN could be trained to model the structure of the
genome in the same fashion as natural language models (e.g. BERT, GPT) are trained to model the
structure of natural human language. Then this model will be used and fine-tuned in downstream
tasks, such as in finding which genes associated with disease or protein concentration. We encourage
the fellow to investigate and explore further alternatives and methods.

We will apply the approach across cardiometabolic conditions including (the following outcomes)
diagnosis of cardiovascular disease (e.g. atherosclerosis), type 2 diabetes, chronic kidney disease,
obesity and adiposity related traits. We will harness information on family history of diseases when
available (e.g. family history of diabetes), and endophenotypic markers of disease (e.g. insulin
resistance).

Recent work, from Langenberg and colleagues in Science and from Stefannson and colleagues in
Nature Genetics, have shown the utility of proteins in relation to disease understanding, therefore we
will also experiment with including protein concentrations in the NNs. For each such input we will
train our NNs on on >3,000 proteins from >50,000 volunteers. After cross-validation, we will record
the accuracy that our NNs achieved on predicting the outcome variable (e.g. diagnosis of the given
cardiometabolic disease).

We will prioritise the genes that are identified as significant for follow-up using a suite of bioinformatic
approaches and assess their viability as potential therapeutic targets. We will collaborate with in vitro
scientists at Novo Nordisk to validate the hypothesised targets in phenotypic assays.

Bibliography

1. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436—444 (2015).

2. Rusk, N. Deep learning. Nat. Methods 13, 35—-35 (2016).

3. Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat.
Biotechnol. 36, 983-987 (2018).

4. Zhavoronkov, A. et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors.
Nat. Biotechnol. 37, 1038-1040 (2019).

5. Esteva, A. et al. A guide to deep learning in healthcare. Nat. Med. 25, 24-29 (2019).

6. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks.
Nature 542, 115-118 (2017).

7. Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning.
Nature 577, 706—710 (2020).

8. Wong, A. K., Sealfon, R. S. G., Theesfeld, C. L. & Troyanskaya, O. G. Decoding disease: from
genomes to networks to phenotypes. Nat. Rev. Genet. (2021) doi:10.1038/s41576-021-00389-x.


https://www.zotero.org/google-docs/?fS5dyb
https://www.zotero.org/google-docs/?fS5dyb
https://www.zotero.org/google-docs/?fS5dyb
https://www.zotero.org/google-docs/?fS5dyb
https://www.zotero.org/google-docs/?fS5dyb
https://www.zotero.org/google-docs/?fS5dyb
https://www.zotero.org/google-docs/?fS5dyb
https://www.zotero.org/google-docs/?fS5dyb
https://www.zotero.org/google-docs/?fS5dyb
https://www.zotero.org/google-docs/?fS5dyb
https://www.zotero.org/google-docs/?fS5dyb
https://www.zotero.org/google-docs/?fS5dyb
https://www.zotero.org/google-docs/?fS5dyb

9. Poplin, R., Chang, PC., Alexander, D. et al. A universal SNP and small-indel variant caller using deep
neural networks. Nat Biotechnol (2018) doi:10.1038/nbt.4235

10. Liu, Zhuang, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell and Saining Xie.
A ConvNet for the 2020s. ArXiv (2022).

11. He, Kaiming, Haoqi Fan, Yuxin Wu, Saining Xie and Ross B. Girshick. Momentum Contrast for
Unsupervised Visual Representation Learning. IEEE/CVF Conference on Computer Vision and Pattern
Recognition CVPR (2020)

12. Palmer, L. J. UK Biobank: bank on it. The Lancet 369, 1980-1982 (2007).

Contributions of Oxford and NNRCO supervisors:
Oxford supervisor, Alejo Nevado-Holgado will provide expertise on NNs methodology and

application. NNRCO supervisor will provide expertise on cardiometabolic disease genetics, statistical
methodology and target identification.
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