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Project outline  
 
The immune system is integral to the pathogenesis of a broad spectrum of CVD1. Positive signals with 
canakinumab2  and colchicine3 strongly suggest a critical role for innate immunity in CVD. Repurposing 
methotrexate4 and p38MAPK inhibitors5 failed to reduce CVD events, indicating that mechanism-
driven immunomodulatory strategy will be more effective than general immunosuppression. The 
challenge is to identify the key culprits of atherosclerosis-specific inflammation amongst the plethora 
of immune mediators while sparing host defence.  
 
My lab and others have applied single cell (sc) RNA sequencing (RNAseq) and mass cytometry (CYTOF) 
to study immunological networks in human and mouse atherosclerosis6-9. Using single cell 
transcriptomics to profile approximately 22,000 CD45+live cells derived from human carotid 
endarterectomy specimens (“discovery cohort”), alongside bulk RNAseq and immunohistochemistry 
in the Carotid Plaque Imaging Project (CPIP) study (“validation cohort”), we revealed the existence of 
2 distinct lipid-associated macrophage (LAM) populations in human plaques; the widely described 
TREM2hi LAMs with homeostatic and efficient lipid handling signature, and a yet unreported 
population, perilipin-2 and TREM1 (PLIN2hi/TREM1hi) LAMs, displaying simultaneously lipid, 
inflammatory and apoptotic gene signatures. In the CPIP cohort (n=115), the transcriptional and 
protein signature of inflammatory LAMs (iLAMs) is enriched in plaques from CPIP patients with carotid 
artery disease who recently experienced stroke compared to those who did not. Our data reveal the 
cellular basis of lipid-driven inflammation in human atherosclerosis and links it to plaque vulnerability 
to complications10. 
 
Hypothesis and Goal Using computational and functional analyses we indicated the existence of a 
cellular transition from homeostatic (TREM2hi) to iLAMs (PLIN2hi/TREM1hi) in human atherosclerosis 
(Figure 1). We have refined a model system where human atheroma cells are used to condition culture 
medium that is able to induce the PLIN2hi/TREM1hi LAM state in matched blood monocyte derived 
macrophages. In this project we propose to identify therapeutic targets responsible for this transition 
using multi-omics platforms centered on human tissues and functional validation from murine models. 
 
Aims and Description of work 
Aim 1: Identification of the molecular targets underlying the pathogenic LAM transition using multi-
omic data of human atherosclerotic tissues. Our group retains one of the most comprehensive 
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immune scRNAseq and mass cytometry datasets of human carotid and aortic tissues and murine 
atherosclerotic aortas using. In this project, we aim to refine, implement and interpret these datasets 
to identify molecular targets that drive atherogenesis using bioinformatics analyses including protein-
ligand interactome analysis and targeted and untargeted proteomics. Examples of ligand-receptor 
interactions emerged from the scRNASeq dataset in Figure 2. These findings will be validated with in 
situ transcriptional and proteomic imaging approaches, allowing the study of the spatial distribution 
of specialised macrophage populations in atherosclerotic tissues. Imaging approaches will help us 
define Transitional LAM states and discover potential cellular cross-talks that mediate atherogenesis 
through macrophage programming. 
Deliverable 1: Identification of candidate targets associated with LAM transition in human. 
 
Aim 2: Validation of LAM reprogramming using candidate targets. We will investigate the function 
of the target genes by using ex vivo atheroma cell culture from human carotid endarterectomies 
combined with human induced pluripotent stem cell (iPS)-derived macrophages. The use of iPS-
derived macrophages will allow target validation using knockouts, CRISPR-Cas9 activation or blockers 
as appropriate, and using established macrophage functional readouts, including inflammation, 
genomics and metabolism. Deliverable 2: In vitro validation of target pathways in human LAMs. 
 
Aim 3: Functional study of the LAM transition using murine models of atherosclerosis. Functional 
studies on the candidate targets in macrophages will be performed using conditional genetic deletion, 
ablation approaches and fate mapping studies for ontogenetic analysis of LAMs. We have access to a 
range of published and unique murine strains that will enable a detailed analysis of LAM niches. For 
instance, mouse strains carrying the target gene will be crossed with Cx3cr1-Cre mouse lines to delete 
the molecule of interest in myeloid subsets or to trace their fate within lesions. 
Deliverable 3: In vivo validation of LAM transition in atherosclerosis. 
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Figure 2. Small selection of ligand receptor interactions of relevance for macrophage interactions. 
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