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Project outline:  

Background This proposal uses a unique fish model, the Mexican cavefish (Astyanax Mexicanus), 

combined with mouse and patient data to uncover key novel mechanisms underlying protection from 

cardiovascular disease caused by diabetes mellitus, promoting identification of innovative therapeutic 

approaches. Astyanax mexicanus is a single fish species comprising cave-dwelling and surface 

populations. Thousands to millions of years ago, surface fish living in rivers became trapped in caves. 

During their independent evolution in the caves, the fish lost their eyes and pigment, redundant in the 

absence of light.1,2 In addition, to be able to survive food scarcity, the fish adapted their metabolism. 

They developed an increased appetite and increased fat accumulation when food is abundant, such 

as in the lab.3,4 This leads to increased body fat, including a fatty liver.3,5 Alongside these fat-based 

adaptions, cavefish also display hyperglycaemia and insulin resistance – all phenotypes associated 

with human obesity and diabetes mellitus. Indeed, cavefish possess a mutation in the insulin receptor 

(SNP p211L) that has been associated with Rabson-Mendenhall syndrome, a condition of severe 

insulin resistance.6  From our own work, we also know that the hearts show features of diabetic 

cardiomyopathy (7,8 and unpublished data). Intriguingly, these same cavefish (lab) populations exhibit 

robust health and longevity, living much longer than their surface fish counterparts,4–6 without 

features of pathologies typically associated with obesity and diabetes such as accumulation of 

advanced glycation end products (AGEs), chronic tissue inflammation, impaired growth due to insulin 

dysregulation, and low survivability due to arterial disease.5,6 While they have increased body fat, this 

does not accumulate on the heart and vessels,8 suggesting a mechanism protecting these organs, 

which could be an essential factor for their longer lifespan. From published work and our own 

unpublished scRNAseq data, we know that the immune system of cavefish is altered with a reduced 

pro-inflammatory response.9 In particular, il1b upregulation (a feature of human diabetes) during 

inflammation is much less strong in cavefish compared to surface fish. Additionally, their fat deposits 

contain fewer immune cells.9 This suggests that cavefish are able to live healthily even while obese 

and diabetic, potentially due to adaptations of their immune system and these changes could be 

crucial for their longevity. This project will use the Astyanax model as a discovery model, directly 

comparing the cavefish with not only the surface fish, but also mouse and humans, and specifically, 

will tease out which genomic adaptation and pathways reduce the pathological response to obesity 

and diabetes.  
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Hypothesis Cavefish are protected from the pathological effects of hyperglycaemia and related 

cardiovascular disease due to evolutionary adaptations to their immune system. Understanding the 

mechanisms underlying this protection will provide novel inroads into therapies. 

 

Aims 

1. To identify the key regulatory genes underlying the cavefish protective phenotype 

2. To identify similarities/differences in inflammatory gene profile between cavefish and diabetic mice 

and patients 

3. To identify inhibitors/activators inducing the protective mechanisms.  

 

Description of the work to be undertaken For Aim 1 we will take full advantage of the Astyanax 

model: As the fish are still one species, this allows for forward genetic screening methods including 

QTL analysis. We will generate 200 second generation (F2) offspring from a cavefish-surface fish cross. 

The adult fish will be tested for hyperglycaemia and hypercholesterolemia. The spleens and hearts will 

be isolated for bulk RNAseq and the body will be embedded for sectioning to analyse for athero-

sclerosis in the aorta and crown-like structures in the fat. DNA will be collected from all F2 fish to 

perform RADseq to be able to perform QTL analysis on traits such as il1b and other pro-inflammatory 

gene levels in the spleen, level of cardiomyopathy, and the amount of atherosclerosis in the aorta. 

This will identify the key regions in the genome regulating the protective response. Aim2: To identify 

the unique ‘protective’ inflammatory gene signature and look for conservation, we will also perform 

scRNAseq on cavefish and surface fish spleen and circulating leukocytes. This data will directly be 

compared and integrated with existing scRNAseq data from spleens of diabetic STZ mice and controls 

as well as human diabetes versus control leukocytes (PBMC). Aim3: We will test inhibitors/activators 

of the identified ‘protective’ genes/pathways in fish and mice with the aim to test conservation and 

find novels ways to induce protection from hyperglycaemia and hypercholesterolemia. 
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