Re-ordering human B lymphopoiesis: Discovery of a CD10-ve fetal B progenitor

Andi Roy
University of Oxford
Is leukaemia the same disease at any age?

<table>
<thead>
<tr>
<th></th>
<th>INFANCY</th>
<th>CHILDHOOD</th>
<th>ADULTHOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of patients (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>infant ALL</td>
<td>53.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>paediatric ALL</td>
<td>91.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>adult ALL</td>
<td>39%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overall Survival

- paediatric ALL: 91.5%
- infant ALL: 53.8%
- adult ALL: 39%
• What is the target (fetal) cell for leukaemic transformation in infant/childhood ALL?

• Where do these lie in the B cell developmental hierarchy?

• Are these progenitors restricted to a particular developmental stage or site?

• Do the fetal specific characteristics of these progenitors define the biology of the leukaemia?
Sites of haematopoiesis through ontogeny

FL and FBM from 6 weeks- 21 post conceptional weeks
Fetal specific B progenitors

CD34

HSC → MPP → LMPP → CLP → ProB → B cell

CD19-10+

CD19+10+

High frequency of PreProB progenitors in FBM

Sanz et al (CB), 2010
Roy et al (FL), 2012
Roy et al (fetal vs postnatal), 2017
Are fetal specific B progenitors site/ stage specific

HSC ➔ MPP ➔ LMPP ➔ ELP ➔ PreProB ➔ ProB ➔ B cell

% of Lin-2-CD34+

FL (n= 49) ➔ FBM (n= 27)

HSC MPP LMPP ELP PreProB ProB

Post conceptional weeks

% of Lin2-CD34+

FL ELP FBM ELP

Post conceptional weeks

% of Lin2-CD34+

FL PreProB FBM PrePro B

Post conceptional weeks

% of Lin2-CD34+

FL ProB FBM Pro B

Post conceptional weeks
Are upstream FBM progenitors ‘lymphoid primed’?

HSC → MPP → LMPP → ELP

PreProB → CD19+10-

ProB → CD19+10+

B cell

Lineage-CD34+

SAMPLES
2 x Fetal liver (FL)
2 x Fetal BM (FBM)

Chromium 10 X
HT single cell gene expression

30,000 cells
Are upstream FBM progenitors ‘lymphoid primed’?

<table>
<thead>
<tr>
<th>ERYTHROID</th>
<th>MYELOID</th>
<th>LYMPHOID</th>
<th>MEGAKARYOCYTIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPOR</td>
<td>ELANE</td>
<td>CD79A</td>
<td>C6orf25</td>
</tr>
<tr>
<td>KLF1</td>
<td>AZU1</td>
<td>VPREB1</td>
<td>CD9</td>
</tr>
<tr>
<td>TFR2</td>
<td>PRTN3</td>
<td>VPREB3</td>
<td>CLU</td>
</tr>
<tr>
<td>TFR1</td>
<td>CFD</td>
<td>IL7R</td>
<td>PF4</td>
</tr>
<tr>
<td>CSF2RB</td>
<td>MPO</td>
<td>EBF1</td>
<td>GP9</td>
</tr>
<tr>
<td>APOE</td>
<td>CSF3R</td>
<td>IGHM</td>
<td>ITGA2B</td>
</tr>
<tr>
<td>APOC1</td>
<td>CSF1R</td>
<td>JCHAIN</td>
<td>ITGAB3</td>
</tr>
<tr>
<td>CNRIP1</td>
<td>LYZ</td>
<td>CD22</td>
<td>CLEC1B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS4A3</td>
<td>GP6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CST7</td>
<td>PDGFA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CTSG</td>
<td>FLI1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>THBS1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SELP</td>
</tr>
</tbody>
</table>

N Ashley
B Psaila
S Thongjuea
Are upstream FBM progenitors ‘lymphoid primed’?

Erythroid affiliated HSPC compartment predominant in FL and lymphoid affiliated in FBM

The Lin-CD34+ HSPC compartment varies in its composition and lineage specification in a site-specific manner in the same fetus and is most likely, directed by cell intrinsic and/or specific microenvironmental factors.
Characterising human FBM B lymphopoiesis

CD34

HSC → MPP → LMPP → ELP

- PreProB (CD19+10-)
- ProB (CD19+10+)

B cell

Immunophenotyping

Functional

Gene expression

Epigenetics

O’Byrne et al, manuscript under revision
Cellular hierarchy of human fetal B lymphopoiesis

FUNCTIONAL

<table>
<thead>
<tr>
<th></th>
<th>HSC</th>
<th>MPP</th>
<th>LMPP</th>
<th>ELP</th>
<th>Pre ProB</th>
<th>ProB</th>
</tr>
</thead>
<tbody>
<tr>
<td>erythroid</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>myeloid</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>T</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NK</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>B</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

O’Byrne et al, manuscript under revision
Cellular hierarchy by gene expression

HSC → MPP → LMPP → ELP → PreProB → ProB → B cell

- CD19+10-
- CD19+10+

BULK FACS SORTING (100 cells/population)

RNA SEQUENCING

BIOINFORMATICS

SINGLE CELL INDEX SORTING

BIOMARK SINGLE CELL RQ-PCR

96 GENE PANEL (lineage/lymphoid/iALL associated genes)

Natalina Elliott
Gemma Buck
S O’Byrne
Cellular hierarchy by gene expression

HSC → MPP → LMPP → ELP → PreProB → ProB → B cell

CD19+10- CD19+10+

• B lymphoid differentiation trajectory: HSC->MPP->LMPP->ELP->PPB->PB->B

O’Byrne et al, manuscript under revision
SC RQ-PCR analysis shows upregulation of B cell specific gene expression from ELP → PreProB → ProB
Pre ProB progenitors are distinct from ProB progenitors

RNA-SEQ

808 genes DE (FDR<0.1)

PreProB
ProB

Lineage and leukaemia associated genes

PreProB
ProB

(log2 FC vs. 0)

RNA-SEQ

HOXA5
KIT
LIN28B
RUNX2
MPO
CSF1R
CD244
CD3D

(*)FDR<0.1
Pre ProB progenitors are distinct from ProB progenitors

Chromatin accessibility (ATAC sequencing)

PC1

PC2

PreProB

ProB

Lin+ MNC

PreProB

ProB

Lin+ MNC

MME/CD10

LIN28B

DNTT

PROM1

RAG1

MPO

CD19+10-
(2000 cells)

CD19+10+
(2000 cells)

CD34-Lin+
(5000 cells)

S O’Byrne
C Garnett
Cellular hierarchy by IgH status

HSC → MPP → LMPP → ELP → PreProB → ProB → B cell

RAG1 and DNTT

NO REARRANGEMENT

D-J?

D-J?

D-J?/VDJ

V-D-J

IgH rearrangements

VDJ

DJ

nil

S O’Byrne
S Rice
G Wright (GOSH)
Cellular hierarchy using *in vivo* models

HSC → MPP → LMPP → ELP

CMP → GMP → MEP

PreProB (CD19+10-)

ProB (CD19+10+)

B cell

Lineage-CD34+19-10-

Week 2-3 bone marrow

Check for engraftment and differentiation

S Rice
N Fordham
S O’Byrne
Cellular hierarchy using *in vivo* models

- HSC
- MPP
- LMPP
- ELP
- PreProB
- ProB
- B cell

Lineage-CD34+19-10-

- CMP
- GMP
- MEP

% hCD45+

- CD34+19-10-
- PreProB
- ProB

Graphs showing the distribution of hCD45+ cells in different stages.
There are 2 different B cell progenitors in fetal life based on CD10 expression:

- The CD10- Pre ProB progenitor is more abundant in fetal BM compared to FL.
- It is distinct from and lies upstream of the CD10+ ProB progenitor.
- It is fetal specific and virtually absent in adult BM.
Cellular hierarchy of fetal B lymphopoiesis

- HSC
- MPP
- LMPP
- ELP
- PreProB
- ProB
- B cell
All infant and many paediatric ALL originate in fetal life.

The CD10- Pre ProB progenitor may be the target for infant ALL.

The CD10+ ProB progenitor may be the target for paediatric ALL.
Acknowledgments

Roberts lab
Prof Irene Roberts
Sorcha O’Byrne
Siobhan Rice
Natalina Elliott
Gemma Buck
Nicholas Fordham
C Garnett
Peng Hua
Eleni Louka
Lucy Field

Prof G Hollander

Milne lab
Tom Milne
L Godfrey
J Kerry
Nick Crump

Mead lab
Prof Adam Mead
B Povinelli
Beth Psaila

Hashem Koohy

CBRG
Supat Thongjuea
Guanlin Wang

Single Cell Facility (WIMM)
Neil Ashley

Flow facility (WIMM)

Genome Engineering Facility
Biomedical Services, Oxford

Imperial College London
Prof Tassos Karadimitris
V Caputo
A Rotolo
D Iskander

Great Ormond St Hospital
Phil Ancliff
Sarah Inglott
Gary Wright
D Ladon

Menendez Lab
(Barcelona)