Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Multiple forms of PilC were found in Neisseria meningitidis (Nm) strains isolated from the oropharynx, blood or cerebrospinal fluid expressing either Class I or Class II pili. PilC expression was observed less frequently in case as opposed to carrier isolates. Moreover, PilC and pili were not always co-expressed. Several heavily piliated strains had no detectable PilC protein as determined by Western blotting using an antiserum previously used to detect such proteins in adhesive variants (Nassif et al., 1994). Serogroup B strain MC58 produced large numbers of pili, but expressed barely detectable amounts of PilC. A clonal variant of this strain with increased expression of PilC concurrently exhibited increased adherence to Chang conjunctival epithelial cells and human umbilical vein endothelial cells (Huvecs), but with more rapid binding to the former. No alteration in pilin sequence occurred in this variant, suggesting the involvement of PilC in increased adhesion. A Pil- backswitcher isolated from the hyper-adherent variant was PilC+ but was non-adherent, indicating that any PilC adherence function requires pilus expression. Parental variant (low PilC) produced pili in bundles that were easily detached from the bacterial surface and were frequently associated with Huvec surfaces after bacteria had been sheared off, but pili infrequently replaced bacteria during infection with the PilC-expressing variant. The hyper-adherent variant, which appeared to produce morphologically distinct pilus bundles, was able to withstand considerable shearing force and remained firmly attached to Huvecs. This raises the possibility that the observed hyper-adherence may arise from better anchorage of pili to the bacterial surface in addition to increased adhesion to some host cell surfaces.

Original publication

DOI

10.1111/j.1365-2958.1995.tb02334.x

Type

Journal article

Journal

Mol Microbiol

Publication Date

06/1995

Volume

16

Pages

1087 - 1097

Keywords

Bacterial Adhesion, Bacterial Proteins, Base Sequence, Cells, Cultured, Endothelium, Vascular, Epithelium, Fimbriae Proteins, Fluorescent Antibody Technique, Gene Expression, Humans, Immunoblotting, Microscopy, Electron, Molecular Sequence Data, Neisseria meningitidis, Phenotype, Pili, Sex