Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The cytosolic Ca2+ activity of insulin-releasing clonal cells (RINm5F) was studied with the intracellular fluorescent indicator quin-2. When the extracellular Ca2+ concentration was 1 mM, the basal cytosolic Ca2+ activity was 101 +/- 5 nM. Depolarization with 25 mM K+ increased this Ca2+ activity to at least 318 nM, an effect completely reversed by the voltage-dependent channel blocker D-600. In the presence of K+ alone these channels appeared to have a half-life of 6.7 +/- 0.8 min. In contrast to the action of K+, exposure of the RINm5F cells to 4 mM glucose resulted in a reduction of the cytosolic Ca2+ activity. This effect was observed during K+ depolarization but was more pronounced under basal conditions when it amounted to 20%. The data provide the first direct evidence that glucose can decrease the cytosolic Ca2+ activity in beta-cells. Unlike the case in normal beta-cells the glucose effect on the voltage-dependent Ca2+ channels in the RINm5F cells is apparently not sufficient to overcome the intracellular buffering of Ca2+. A defective depolarization is therefore a probable cause of the failing insulin secretion of RINm5F cells exposed to glucose.

Type

Journal article

Journal

Biosci Rep

Publication Date

10/1983

Volume

3

Pages

939 - 946

Keywords

Adenoma, Islet Cell, Aminoquinolines, Animals, Calcium, Clone Cells, Cytosol, Gallopamil, Glucose, Pancreatic Neoplasms, Potassium, Rats