Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Kidney stones (nephrolithiasis), which affect 12% of males and 5% of females in the western world, are familial in 45% of patients and are most commonly associated with hypercalciuria. Three disorders of hypercalciuric nephrolithiasis (Dent's disease, X-linked recessive nephrolithiasis (XRN), and X-linked recessive hypophosphataemic rickets (XLRH)) have been mapped to Xp11.22 (refs 5-7). A microdeletion in one Dent's disease kindred allowed the identification of a candidate gene, CLCN5 (refs 8,9) which encodes a putative renal chloride channel. Here we report the investigation of 11 kindreds with these renal tubular disorders for CLCN5 abnormalities; this identified three nonsense, four missense and two donor splice site mutations, together with one intragenic deletion and one microdeletion encompassing the entire gene. Heterologous expression of wild-type CLCN5 in Xenopus oocytes yielded outwardly rectifying chloride currents, which were either abolished or markedly reduced by the mutations. The common aetiology for Dent's disease, XRN and XLRH indicates that CLCN5 may be involved in other renal tubular disorders associated with kidney stones.

Original publication

DOI

10.1038/379445a0

Type

Journal article

Journal

Nature

Publication Date

01/02/1996

Volume

379

Pages

445 - 449

Keywords

Amino Acid Sequence, Animals, Base Sequence, Calcium, Cells, Cultured, Chloride Channels, DNA, DNA Mutational Analysis, Electrochemistry, Female, Kidney Calculi, Male, Molecular Sequence Data, Mutation, Pedigree, Polymerase Chain Reaction, Protein Conformation, Recombinant Proteins, Xenopus