Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The hypoparathyroidism-deafness-renal (HDR) dysplasia syndrome is an autosomal dominant disorder caused by mutations of the dual zinc finger transcription factor, GATA3. We investigated 21 HDR probands and 14 patients with isolated hypoparathyroidism for GATA3 abnormalities. Thirteen different heterozygous germline mutations were identified in patients with HDR. These consisted of three nonsense mutations, six frameshifting deletions, two frameshifting insertions, one missense (Leu348Arg) mutation and one acceptor splice site mutation. The splice site mutation was demonstrated to cause a pre-mRNA processing abnormality leading to the use of an alternative acceptor site 8 bp downstream of the normal site, resulting in a frameshift and prematurely terminated protein. Electrophoretic mobility shift assays (EMSAs) revealed three classes of GATA3 mutations: those that lead to a loss of DNA binding which represent over 90% of all mutations, and involved a loss of the carboxy-terminal zinc finger; those that resulted in a reduced DNA-binding affinity; and those (e.g. Leu348Arg) that did not alter DNA binding or the affinity but likely altered the conformational change that occurs during binding in the DNA major groove as predicted by a three-dimensional modeling. These results elucidate further the molecular mechanisms underlying the altered functions of mutants of this zinc finger transcription factor and their role in causing this developmental anomaly. No mutations were identified in patients with isolated hypoparathyroidism, thereby indicating that GATA3 abnormalities are more likely to result in two or more of the phenotypic features of the HDR syndrome and not in one, such as isolated hypoparathyroidism.

Original publication

DOI

10.1093/hmg/ddl454

Type

Journal article

Journal

Hum Mol Genet

Publication Date

01/02/2007

Volume

16

Pages

265 - 275

Keywords

Abnormalities, Multiple, Adolescent, Adult, Amino Acid Sequence, Base Sequence, Child, Child, Preschool, DNA-Binding Proteins, Deafness, Female, GATA3 Transcription Factor, Humans, Hypoparathyroidism, Infant, Infant, Newborn, Kidney, Male, Models, Biological, Models, Molecular, Molecular Sequence Data, Mutation, Pedigree, RNA Splice Sites, Syndrome