Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Many apicomplexan parasites, such as Toxoplasma gondii and Plasmodium species, possess a nonphotosynthetic plastid, referred to as the apicoplast, which is essential for the parasites' viability and displays characteristics similar to those of nongreen plastids in plants. In this study, we localized several key enzymes of the carbohydrate metabolism of T. gondii to either the apicoplast or the cytosol by engineering parasites which express epitope-tagged fusion proteins. The cytosol contains a complete set of enzymes for glycolysis, which should enable the parasite to metabolize imported glucose into pyruvate. All the glycolytic enzymes, from phosphofructokinase up to pyruvate kinase, are present in the T. gondii genome, as duplicates and isoforms of triose phosphate isomerase, phosphoglycerate kinase, and pyruvate kinase were found to localize to the apicoplast. The mRNA expression levels of all genes with glycolytic products were compared between tachyzoites and bradyzoites; however, a strict bradyzoite-specific expression pattern was observed only for enolase I. The T. gondii genome encodes a single pyruvate dehydrogenase complex, which was located in the apicoplast and absent in the mitochondrion, as shown by targeting of epitope-tagged fusion proteins and by immunolocalization of the native pyruvate dehydrogenase complex. The exchange of metabolites between the cytosol and the apicoplast is likely to be mediated by a phosphate translocator which was localized to the apicoplast. Based on these localization studies, a model is proposed that explains the supply of the apicoplast with ATP and the reduction power, as well as the exchange of metabolites between the cytosol and the apicoplast.

Original publication

DOI

10.1128/EC.00061-07

Type

Journal article

Journal

Eukaryot Cell

Publication Date

06/2007

Volume

6

Pages

984 - 996

Keywords

Amino Acid Sequence, Animals, Carbohydrate Metabolism, Glycolysis, Isoenzymes, Molecular Sequence Data, Organelles, Phosphate Transport Proteins, Plant Proteins, Plastids, Protozoan Proteins, Pyruvate Dehydrogenase Complex, RNA, Messenger, Recombinant Fusion Proteins, Sequence Alignment, Toxoplasma