Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Hypercalciuria is the most common risk factor for kidney stones and has a recognized familial component. The genetic hypercalciuric stone-forming (GHS) rat is an animal model that closely resembles human idiopathic hypercalciuria, with excessive intestinal calcium absorption, increased bone resorption, and impaired renal calcium reabsorption; overexpression of the vitamin D receptor (VDR) in target tissues; and calcium nephrolithiasis. For identifying genetic loci that contribute to hypercalciuria in the GHS rat, an F2 generation of 156 rats bred from GHS female rats and normocalciuric WKY male rats was studied. The calcium excretion was six- to eightfold higher in the GHS female than in the WKY male progenitors. Selective genotyping of those F2 rats with the highest 30% and lowest 30% rates of calcium excretion was performed, scoring 98 markers with a mean interval of 23 cM across all 20 autosomes and the X chromosome. With the use of strict criteria for significance, significant linkage was found between hypercalciuria and a region of chromosome 1 at D1Rat169 (LOD, 2.91). Suggestive linkage to regions of chromosomes 4, 7, 10, and 14 was found. The proportion of phenotypic variance contributed by the region on chromosome 1, with appropriate adjustments, was estimated to be 7%. Candidate genes encoding the VDR and the calcium-sensing receptor were localized to regions on rat chromosomes 7 and 11, respectively, but the suggestive quantitative trait locus on chromosome 7 was not in the region of the VDR gene locus. Identification of genes that contribute to hypercalciuria in this animal model should prove valuable in understanding idiopathic hypercalciuria and kidney stone disease in humans.

Type

Journal article

Journal

J Am Soc Nephrol

Publication Date

07/2003

Volume

14

Pages

1844 - 1850

Keywords

Animals, Calcium, Calcium Metabolism Disorders, Chromosome Mapping, Crosses, Genetic, Disease Models, Animal, Female, Genetic Linkage, Genetic Markers, Genotype, Kidney Calculi, Male, Models, Genetic, Phenotype, Quantitative Trait Loci, Rats, Rats, Inbred F344, Rats, Inbred WKY, Risk Factors