Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Glucagon-like peptide-1 (GLP-1) is produced in gut endocrine cells and in the brain, and acts through hormonal and neural pathways to regulate islet function, satiety, and gut motility, supporting development of GLP-1 receptor (GLP-1R) agonists for the treatment of diabetes and obesity. Classic notions of GLP-1 acting as a meal-stimulated hormone from the distal gut are challenged by data supporting production of GLP-1 in the endocrine pancreas, and by the importance of brain-derived GLP-1 in the control of neural activity. Moreover, attribution of direct vs indirect actions of GLP-1 is difficult, as many tissue and cellular targets of GLP-1 action do not exhibit robust or detectable GLP-1R expression. Furthermore, reliable detection of the GLP-1R is technically challenging, highly method dependent, and subject to misinterpretation. Here we revisit the actions of GLP-1, scrutinizing key concepts supporting gut vs extra-intestinal GLP-1 synthesis and secretion. We discuss new insights refining cellular localization of GLP-1R expression and integrate recent data to refine our understanding of how and where GLP-1 acts to control inflammation, cardiovascular function, islet hormone secretion, gastric emptying, appetite, and body weight. These findings update our knowledge of cell types and mechanisms linking endogenous vs pharmacological GLP-1 action to activation of the canonical GLP-1R, and the control of metabolic activity in multiple organs.

Original publication

DOI

10.1210/endrev/bnaa032

Type

Journal article

Journal

Endocr Rev

Publication Date

2021

Volume

42

Pages

101 - 132

Keywords

brain cardiovascular diabetes gastrointestinal tract islets obesity receptor