Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2020 The Authors Surfactant protein B (SPB) deficiency is a severe monogenic interstitial lung disorder that leads to loss of life in infants as a result of alveolar collapse and respiratory distress syndrome. The development and assessment of curative therapies for the deficiency are limited by the general lack of well-characterized and physiologically relevant in vitro models of human lung parenchyma. Here, we describe a new human surfactant air-liquid interface (SALI) culture model based on H441 cells, which successfully recapitulates the key characteristics of human alveolar cells in primary culture as evidenced by RNA and protein expression of alveolar cell markers. SALI cultures were able to develop stratified cellular layers with functional barrier properties that are stable for at least 28 days after air-lift. A SFTPB knockout model of SPB deficiency was generated via gene editing of SALI cultures. The SFTPB-edited SALI cultures lost expression of SPB completely and showed weaker functional barrier properties. We were able to correct this phenotype via delivery of a lentiviral vector pseudotyped with Sendai virus glycoproteins F/HN expressing SPB. We believe that SALI cultures can serve as an important in vitro research tool to study human alveolar epithelium, especially for the development of advanced therapy medicinal products targeting monogenic disorders.

Original publication

DOI

10.1016/j.omtm.2020.11.013

Type

Journal article

Journal

Molecular Therapy - Methods and Clinical Development

Publication Date

12/03/2021

Volume

20

Pages

237 - 246