Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIMS: Hypertrophic cardiomyopathy (HCM) is the commonest cause of sudden cardiac death in the young, with an excess of exercise-related deaths. The HCM sarcomere mutations increase the energy cost of contraction and impaired resting cardiac energetics has been documented by measurement of phosphocreatine/ATP (PCr/ATP) using (31)Phosphorus MR Spectroscopy ((31)P MRS). We hypothesized that cardiac energetics are further impaired acutely during exercise in HCM and that this would have important functional consequences. METHODS AND RESULTS: (31)P MRS was performed in 35 HCM patients and 20 age- and gender-matched normal volunteers at rest and during leg exercise with 2.5 kg ankle weights. Peak left-ventricular filling rates (PFRs) and myocardial perfusion reserve (MPRI) were calculated during adenosine stress. Resting PCr/ATP was significantly reduced in HCM (HCM: 1.71 ± 0.35, normal 2.14 ± 0.35 P < 0.0001). During exercise, there was a further reduction in PCr/ATP in HCM (1.56 ± 0.29, P = 0.02 compared with rest) but not in normals (2.16 ± 0.26, P = 0.98 compared with rest). There was no correlation between PCr/ATP reduction and cardiac mass, wall thickness, MPRI, or late-gadolinium enhancement. PFR and PCr/ATP were significantly correlated at rest (r = 0.48, P = 0.02) and stress (r = 0.53, P = 0.01). CONCLUSION: During exercise, the pre-existing energetic deficit in HCM is further exacerbated independent of hypertrophy, perfusion reserve, or degree of fibrosis. This is in keeping with the change at the myofilament level. We offer a potential explanation for exercise-related diastolic dysfunction in HCM.

Original publication

DOI

10.1093/eurheartj/ehv120

Type

Journal article

Journal

Eur Heart J

Publication Date

21/06/2015

Volume

36

Pages

1547 - 1554

Keywords

31PMRS, Exercise, Hypertrophic Cardiomyopathy, Adenosine Triphosphate, Adult, Blood Pressure, Cardiomyopathy, Hypertrophic, Case-Control Studies, Diastole, Energy Metabolism, Exercise, Female, Heart Rate, Humans, Magnetic Resonance Angiography, Magnetic Resonance Imaging, Cine, Magnetic Resonance Spectroscopy, Male, Phosphocreatine, Prospective Studies, Stroke Volume, Ventricular Dysfunction, Left