Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The shikimate pathway is essential for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Seven enzymes of the shikimate pathway catalyze sequential conversion of erythrose 4-phosphate and phosphoenol pyruvate to chorismate. Chorismate is then used as a substrate for other pathways that culminate in production of folates, ubiquinone, napthoquinones, and the aromatic amino acids tryptophan, phenylalanine, and tyrosine. The shikimate pathway is absent from animals and present in the apicomplexan parasites Toxoplasma gondii, Plasmodium falciparum, and Cryptosporidium parvum. Inhibition of the pathway by glyphosate is effective in controlling growth of these parasites. These findings emphasize the potential benefits of developing additional effective inhibitors of the shikimate pathway. Such inhibitors may function as broad-spectrum antimicrobial agents that are effective against bacterial and fungal pathogens and apicomplexan parasites.

Original publication

DOI

10.1086/338004

Type

Conference paper

Publication Date

15/02/2002

Volume

185 Suppl 1

Pages

S25 - S36

Keywords

Amino Acid Sequence, Animals, Apicomplexa, Gene Expression Regulation, Glycine, Molecular Sequence Data, Phosphorus-Oxygen Lyases, Shikimic Acid