Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The effect of glucagon-like peptide 1(7-36) amide [GLP-1(7-36) amide] on membrane potential, whole-cell ATP-sensitive potassium channel (K[ATP]) and Ca2+ currents, cytoplasmic Ca2+ concentration, and exocytosis was explored in single human beta-cells. GLP-1(7-36) amide induced membrane depolarization that was associated with inhibition of whole-cell K(ATP) current. In addition, GLP-1(7-36) amide (and forskolin) produced greater than fourfold potentiation of Ca2+-dependent exocytosis. The latter effect resulted in part (40%) from acceleration of Ca2+ influx through voltage-dependent (L-type) Ca2+ channels. More importantly, GLP-1(7-36) amide (via generation of cyclic AMP and activation of protein kinase A) potentiated exocytosis at a site distal to a rise in the cytoplasmic Ca2+ concentration. Photorelease of caged cAMP produced a two- to threefold potentiation of exocytosis when the cytoplasmic Ca2+ concentrations were clamped at > or =170 nmol/l. The effect of GLP-1(7-36) amide was antagonized by the islet hormone somatostatin. Similar effects on membrane potential, ion conductances, and exocytosis were observed with glucose-dependent insulinotropic polypeptide (GIP), the second major incretin. The present data suggest that the strong insulinotropic action of GLP-1(7-36) amide and GIP in humans results from its interaction with several proximal as well as distal important regulatory steps in the stimulus-secretion coupling.

Original publication

DOI

10.2337/diab.47.1.57

Type

Journal article

Journal

Diabetes

Publication Date

01/1998

Volume

47

Pages

57 - 65

Keywords

Adult, Calcium, Calcium Channels, Cells, Cultured, Colforsin, Cyclic AMP, Cyclic AMP-Dependent Protein Kinases, Exocytosis, Female, Gastric Inhibitory Polypeptide, Glucagon, Glucagon-Like Peptide 1, Glucagon-Like Peptides, Humans, Islets of Langerhans, Male, Membrane Potentials, Middle Aged, Neurotransmitter Agents, Peptide Fragments, Potassium Channels, Somatostatin